城市快速路交通流速密关系模型优化研究

吴正*,2) 郭明旻* 许谦†

*(复旦大学力学与工程科学系,上海 200433)

†(嘉兴广播电视大学, 嘉兴 314000)

摘要 从实测得到的 210 920 中国城市快速路 "车速-车头间距"数据中,选取包含 26 773 条数据的 3 个样本 作为不同类型交通流的代表,对多个交通流 "速-密关系"模型进行参数优化和拟合优度比较研究,给出优化 模型参数的定性和定量规律. 修正形式的 Kerner-Konhauser 平衡函数和 Payne 平衡函数通过参数优化,分别在畅通和拥挤条件下具有优度相对最高的拟合结果, Greenshields 模型 (等价地, *m* = 3 时的一维管流模型)则对介于两种条件之间的实测数据具有优度相对最高的拟合结果.

关键词 交通流模型, 实测数据, 参数优化, 拟合优度

中图分类号: O39, U491.112 文献标识码: A 文章编号: 0459-1879(2012)04-0709-09

引 言

交通流模型研究的目的是为了较好地认识交 通流这样一个强非线性的复杂过程,运用适当的数 学和信息化手段对其中各种现象进行实测和预报, 从而为交通规划、建设、管理和智能化控制等工程 实践提供依据. 半个多世纪以来, 各国研究者已经 提出上百种交通流模型,为实现这一目标奠定了良 好的基础^[1-12].不过,由于这些模型背景不同,国 情相异,建模思路和数学手段更是各有千秋,交通 工程界尚难直接加以应用. 建立适当的研究平台, 对各种模型进行比较和优化研究,明确它们不同的 适用范围,应该是当前交通流研究的一项重要任务. Helbing 在对 Kerner 的"三相交通流"理论模型提 出批评时,深刻地指出:需要更详尽地依托交通录 像及相关信息处理技术的微观交通流实验数据. 才 能建立充分反映道路交通,尤其是拥堵形成阶段动 力学特性的交通流数学模型 [13]. 我们曾尝试从上 海延安高架录像资料中获得大量实际交通流测量 数据并建立相应的研究平台,进行多种常用"速-密 关系"模型的比较研究,得到一些描述交通流复杂 现象的定量和定性结果^[14].

此后,将相关交通流测量方法应用到国内多个 城市的多条快速路段,进行了系统的数据采集,总 共获得"车速-车头间距"数据 210920 对,建立 了一个国内外交通流模型研究历史上从未有过的 大样本微观"跟车"交通实测数据库^[15]. 该数据 库包括了以下各种不同的交通条件: (1) 上下班高 峰时段与普通时段; (2) 双休日和工作日; (3) 不同 季节; (4) 晴天、雨天和雪天; (5) 二车道、三车道和 四车道; (6) 平直路段和有较大坡度或弯度的路段; (7) 进口匝道前后, 出口匝道前后, 以及离匝道较远 的路段等等.

本文将所有这些实测数据组成 16 个样本,根据平均车头间距的不同,选择其中 3 个样本作为代表,分别对包括 Greenshields 模型^[2]、Greenberg 模型^[3]、Underwood 模型^[4]、Payne 平衡函数^[5]、Kerner-Konhauser 平衡函数^[6]、Lee 平衡函数^[7]和一维管流模型^[8]在内的多种常用"速-密关系"模型进行参数优化和拟合优度比较研究.

1 实测数据

2008 年以来,我们先后在上海、北京、郑州、 西安 4 个城市共 9 个高架或快速路段,拍摄了超 过 40 d 200 h 的实际交通录像,从中选择 16 d 56.5 h 具有不同代表性的录像进行了动态数据采集,共获 得 210 920 条 "车速 - 车头间距"数据.把同一天 某条道路上获得的数据组成一个样本,一共组成 16 个样本,表 1 给出了这些样本的拍摄信息、道路信

²⁰¹¹⁻¹²⁻¹⁹ 收到第 1 稿, 2012-02-22 收到修改稿.

¹⁾ 国家自然科学基金资助项目 (11002035).

²⁾ E-mail: wuzheng@fudan.edu.cn

力

息、平均交通数据和获得的数据量 (对计算机程序 采集到的全部数据进行筛选得到的结果). 由于这 些样本数据量都很大,并且包括了各种不同交通条 件,所以它们能够在相当程度上代表中国城市高架 或快速路交通流的基本特征.

如果单纯从数据量来看,相比于通过感应线圈 检测器或其他方法得到的流量、平均速度和占有率 等数据,本文这些数据算不上"大样本".比如按上 海市高架道路监控系统每5min 保存一次线圈数据 的做法,一昼夜就得到 288 组单车道数据;保守一 点, 假定所有路段平均为三车道, 则一组线圈一昼 夜可采集864组数据;总共154组线圈,两天就有超 过 26 万组数据. 所以, 现在国内做交通流研究的同 行中,拥有"海量"实测数据的并不少.不过,本文 这些数据有其特殊性:一方面,它们不是平均意义 下的数据, 而是单个车辆即时的"速 - 密关系", 21 万多个数据代表了 21 万多辆实际车辆;另一方面. 这些数据是从交通实况录像中提取出来的,如果采 用不同的数据提取方法,同样对这些录像,有可能 得到与它们一致或相近的结果,也有可能会差异很 大. 所以, 将这些数据及其来源的交通录像, 全部组 织成数据库,可以很方便地调用,为今后自己或其 他同行的研究工作提供一种基础的条件.

从表 1 中可以看到, 这些样本的拥挤程度是有 很大差别的, 表现为平均车头间距的不同. 粗浅一 点地划分, 把平均车头间距大于 30 m 的归为交通 畅通的情况, 对应每车道车流密度小于 33 km⁻¹, 有 编号为 5, 15 和 16 共 3 个样本; 把平均车头间距 小于 20 m 的归为交通拥堵的情况, 对应车流密度 大于 50 km⁻¹, 有编号为 2,3,6,7,9 和 14 共 6 个样 本; 把平均车头间距在 20~30 m 的归为交通条件中 等的情况, 有 7 个样本.

2 交通流模型与参数优化比较方法

本文延续文献 [14] 的做法,为了便于和实测 "车速 - 车头间距"数据对进行比较运算,将原来用 "速度 - 密度"关系 $v(\rho)$ 表示的交通流模型,均改 写成"速度 - 车头间距"v(h)的形式.其中速度 v 的 单位为 m/s; 车头间距 h 是密度的倒数,单位为 m; u_f 和 h_j 分别为畅行速度和最小车头间距 (即堵塞 密度的倒数).本文涉及的交通流"速 - 密关系"模 型简述如下:

$$v = u_{\rm f}(1 - h_{\rm j}/h) \tag{1}$$

模型 2 Greenberg 模型

$$v = u_{\rm f} \ln(h/h_{\rm j})/e \tag{2}$$

式中, e 为自然对数的底.

报

模型 3 Underwood 模型

$$v = u_{\rm f} / \exp(\mathrm{e}h_{\rm j}/h) \tag{3}$$

模型 4 Payne 平衡函数

$$v = u_{\rm f} \times \min\{1, 1.94 - 6h_{\rm j}/h + 8(h_{\rm j}/h)^2 - 3.93(h_{\rm i}/h)^3\}$$
(4)

模型 5 Kerner-Konhauser 平衡函数

$$v = u_{\rm f} \times \{1/[1 + \exp(100h_{\rm j}/6h - 25/6)] - 3.72 \times 10^{-6}\}$$
(5)

在本文研究中发现,"速 - 密关系"模型只有在 h_j 取值非常小时才能拟合实测数据 (所以在文献 [14] 中它的误差非常大),不够合理.注意到我们可以把 Kerner-Konhauser 平衡函数形式改写为

$$v = u_{\rm f} \times \{1/[1 + \exp(\alpha h_{\rm j}/6h - 25/6)] - 3.72 \times 10^{-6}\}$$
(6)

其中, α 为一个可调节的系数, 在式 (5) 中取 α = 100, 在本文下面的拟合中取 α = 50.

模型 6 Lee 平衡函数

$$v = u_{\rm f} (1 - h_{\rm j}/h) / [1 + (h_{\rm j}/h)^4]$$
 (7)

模型 7 一维管流模型

$$v = u_{\rm f} \left[1 - (h_{\rm j}/h)^{\frac{m-1}{2}} \right] \tag{8}$$

式中, m 为交通状态指数, 应用中通常取 m = 2.8 和 m = 2.5, 即有

$$v = u_{\rm f} [1 - (h_{\rm j}/h)^{0.9}]$$
 (9)

和

$$v = u_{\rm f} [1 - (h_{\rm j}/h)^{0.75}]$$
 (10)

表 1 4 个城市 16 个交通流样本数据

Table 1 16 traffic flow data samples from four Chinese cities

Sample No.	Recording time	City	Site	Weather	Average headway distance/m	Average velocity/ $(\mathrm{km} \cdot \mathrm{h}^{-1})$	Data size	Road features
1	20080201-1410-1710(Fri.)	Shanghai	Yan'an Viaduct near	snowy	20.89	36.73	12141	away from
			Shanxi Road Yan'an					the ramp
2	20080721-0740-1650(Mon.)	Shanghai	Viaduct near Shanxi Road	sunny	19.25	41.17	28044	away from the ramp
3	20081224-0730-0910(Wed.)	Shanghai	Yan'an Viaduct near Shanxi Road	rainy	18.96	30.72	5504	away from the ramp
4	20081229-0730-0820(Mon.)	Shanghai	Yan'an Viaduct, near Shanxi Road	rainy	25.96	40.76	4804	away from the ramp
5	20080727-0825-1145(Sun.)	Shanghai	Yan'an Viaduct, near Shanxi Road	sunny	32.37	56.42	11474	away from the ramp
6	20081017-1405-1515(Fri.)	Shanghai	South-North Viaduct, near Beijing Road	sunny	14.29	24.90	4716	behind the off ramp
7	20080129-1400-1605(Tue.)	Shanghai	South-North Viaduct, near Beijing Road	snowy	16.80	21.26	8957	behind the off ramp
8	20090713-0600-0740(Mon.)	Shanghai	Inner Ring Viaduct, near Yutian Road	sunny	26.48	36.83	3408	curve
9	20090714-0750-1115(Tue.)	Shanghai	Inner Ring Viaduct, near Yutian Road	sunny	18.34	24.86	1892	curve
10	20081103-0830-1100(Mon.)	Beijing	Fourth Ring Road, west of Xueyuan Bridge	sunny	28.56	38.96	9 795	in front of the on ramp, down slope
11	20081104-0715-0835(Tue.)	Beijing	Fourth Ring Road, west of Xueyuan Bridge	sunny	24.65	40.38	6742	in frontof the on ramp, down slope
12	20081102-1410-1600(Sun.)	Beijing	Fourth Ring Road, west of Xueyuan Bridge	sunny	29.59	40.75	5608	in front of the off ramp, up slope
13	20081126-0755-0940(Wed.)	Xi'an	Second Ring Road, Yanta overpass	sunny	25.95	37.57	5952	behind the on-off ramp, down slope
14	20090804-1125-1815(Tue.)	Xi'an	Second Ring Road, Chang'an overpass	sunny	13.46	19.13	20592	behind the on-off ramp
15	20080825-0835-1650(Mon.)	Zhengzhou	Jinshui Road Viaduct	sunny	37.65	58.64	70184	in front of the on-off ramp, down slope
16	20090806-0720-1905(Thu.)	Zhengzhou	Jinshui Road Viaduct	sunny	30.51	48.86	210.920	in front of the on-off ramp, down slope
total							210920	

报

在文献 [14] 中, 所有模型的畅行速度都取成 与 Pavne 平衡函数一致的数值 $u_{\rm f} = 88.5 \, \rm km/h=$ 24.58 m/s, 而最小车头间距都取 $h_i = 7 \text{ m}$, 也与 Payne 平衡函数中单车道堵塞密度 $\rho_i = 143 \, \text{km}^{-1}$ 保持一致.这一规定实际上降低了拟合优度,增 大了拟合函数与实测数据之间的误差,在 Kerner-Konhauser 平衡函数上表现得尤其明显. 此后, 又将 上海延安高架的实测数据按车头间距大小分组,对 每一组分别进行拟合优度比较,找出拟合优度最高 的分段"速-密关系"模型,但其中的畅行速度和 堵塞密度仍假定为统一的常数 [16-17]. 在实测中发 现,车流中车头间距小于7m的情况非常少,而大于 7m 之后则会明显增多, 所以取 $h_i = 7m$ 是合理的, 本文保持不变. 但畅行速度则不仅与路段的限速等 因素有关,而且与数学模型自身性质也有很大关 系,不同模型采用不同畅行速度取值可以更好地拟 合同一批数据.因此,本文将畅行速度看作模型中 待定参数,先通过某一实测数据样本的拟合,得到 应用于该样本时的最优参数取值, 然后再对都在最 优参数取值下各模型的拟合优度进行比较和分析.

把某一样本总共 N 次实测中得到的"车速-车

头间距"数据对记为 v_i^m 和 h_i^m $(i = 1, 2, \dots, N)$, 将 h_i^m 代入上列各式又可得到对应的 v_i $(i = 1, 2, \dots, N)$. 定义平均误差

$$e_{\rm r} = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{v_i^m}{v_i} - 1 \right|$$
(11)

很明显, e_r 是 u_f 的函数, 由 e_r 的最小值可以确定 各模型应用于该样本时最优的 u_f 取值. 然后比较同 一样本不同模型的 e_r 值可以分析它们的拟合优度, 并得到其他定性定量结论.

3 3 个代表性实测样本的拟合结果

根据第 1 节最后的 3 种分类,本节选取样本 5 (上海延安高架 2008 年 7 月 27 日上午,星期日)、 样本 3 (上海延安高架 2008 年 12 月 24 日早高峰时 段,星期三,雨天)和样本 10 (北京四环 2008 年 11 月 3 日上午,星期一)作为每种类型的代表,分别按 式 (1)~(4),(6),(7),(9)和 (10)计算各模型的 *e*r 值, 进行模型参数优化和拟合优度比较研究.图 1 给出 了这 3 个样本数据来源录像中截取的画面.

(a) 样本 5(a) Sample 5

(c) 样本 10(c) Sample 10

图 1 3 个样本录像拍摄点及气候情况示意图

Fig.1 Measuring site and weather of three samples

表 2 显示了 3 个样本下 8 种不同"速-密关系" 模型分别对应的畅行速度 u_f 最优值,表 3 给出了 3 个样本下 8 种不同"速-密关系"模型按照式 (11) 计算的平均拟合误差.

根据表 2 和表 3 可以得出以下结论:

(1)不同模型拟合同一样本数据,参数取值是 需要不同的,即使最小车头间距(或者等价地堵塞 密度)相同,最优畅行速度也是不同的.各模型的 最优畅行速度大小排序基本上呈现一定规律:对样 本 5 和样本 10 而言, Payne 平衡函数最小, 其次为 Kerner-Konhauser 平衡函数、Greenshields 模型、Lee 平衡函数、一维管流模型 m = 2.8 和 m = 2.5, 最大 的是 Greenberg 模型和 Underwood 模型; 在道路最 为拥挤的样本 3 中, Greenshields 模型变得最小, 一 维管流模型 m = 2.8 和 Kerner-Konhauser 平衡函数 的位置对调, 其余大小次序都同上.

(2) 同一模型在 3 个不同样本中的最优畅行 速度大小排序同样有一定规律:所有模型都是样本 mla

%

5 最大,反映出该样本交通最为通畅的特征;有 4 个模型样本 3 中的畅行速度大于样本 10,它们 是 Payne 平衡函数、Kerner-Konhauser 平衡函数、 Underwood 模型和 Greenberg 模型;其余 4 个模型 样本 3 中的畅行速度则小于样本 10,说明非线性特 征比较强烈的后两种类型交通条件下模型参数优 化结果也会比较复杂.

表 2 不同"速-密关系"计算公式中的 uf 最优值

Table 2 Optimal values of $u_{\rm f}$ of different

velocity-density formulas

								111/ 5
Eq.	(1)	(2)	(3)	(4)	(6)	(7)	(9)	(10)
sample 5	22.97	36.72	36.09	21.08	22.29	23.32	24.20	26.84
sample 3	16.70	32.79	30.08	17.08	19.73	18.17	17.88	20.33
sample 10	18.91	29.65	28.06	16.91	18.39	19.89	19.90	21.97

表 3 不同"速-密关系"模型下的 er 比较

Table 3 Comparison of e_r calculated by different

velocity-density models

								, 0
Eq.	(1)	(2)	(3)	(4)	(6)	(7)	(9)	(10)
sample 5	21.22	34.21	30.65	27.04	22.24	23.86	22.05	23.49
sample 3	30.14	41.32	32.10	30.09	55.94	38.49	30.99	32.38
sample 10	33.32	41.07	30.62	28.54	41.07	38.24	33.49	33.92

(3) 对同一样本而言,参数优化后各模型的拟 合误差大小排序也表现出一定规律:在道路最为通 畅的样本 5 中, Greenshields 模型误差最小,其次 为一维管流模型 m = 2.8, Kerner-Konhauser 平 衡函数、一维管流模型 m = 2.5, Lee 平衡函数和 Payne 平衡函数,误差最大的是 Greenberg 模型和 Underwood 模型;在另外两个相对比较拥挤的样本 中, Payne 平衡函数误差最小,其次为 Underwood 模型、Greenshields 模型、一维管流模型 m = 2.8, m = 2.5 和 Lee 平衡函数, Kerner-Konhauser 平衡函 数和 Greenberg 模型的误差最大.

(4) 同一模型在 3 个不同样本中拟合误差大小 排序的规律则是: 几乎所有模型都是样本 5 最小, 反映出交通通畅的条件下,各种交通流模型都能较 好地拟合它;另外两个样本则仍分成两种情形,除 Lee 平衡函数之外分组恰好与第 2 点结论相同,并 且都是优化畅行速度越大,拟合误差也越大.

(5) 总体而言, Greenshields 模型和 Payne 平衡 函数, 通过适当的参数优化, 能够分别对畅通和拥 挤的样本数据有优度相对最高的拟合结果, 并且按 照式 (11) 计算的平均拟合误差都不超过 35%. 经 过修正的 Kerner-Konhauser 平衡函数式 (6) 也能 对道路通畅的样本 5 较好拟合. 在早期的代数形式 "速 - 密关系"模型中, 一般认为 Greenberg 模型比 较适用于拥挤交通, 而 Underwood 模型则比较适用 于低密度交通, 这一观点主要是从 "速 - 密关系"模 型的限制条件角度考虑的, 本节结果显示在采用各 自不同的优化参数后, 这两个模型之间的差异并不 很明显.

4 样本 10 分时段后的拟合结果

样本 10 总体平均车头间距为 28.56 m, 属于中 等拥挤程度的交通状况. 但进一步观看录像发现, 这是一个周一上午, 早高峰时段非常拥挤 (比样本 3 更严重), 9 点以后开始缓解, 到 10 点以后则变得 很通畅, 28.56 m 只是一个平均效应. 于是, 根据拍摄 过程中摄像机自动分段, 把这个样本分成 3 个时段 进行深入统计分析. 3 个时段采集数据依次为 4552, 2457 和 2786 个; 平均车头间距依次为 16.92 m, 33.61 m 和 43.12 m; 平均车速依次为 23.90 km/h, 45.32 km/h 和 58.00 km/h; 图 2 给出了 3 个时段录 像中代表性的画面.

(a) 8:30~9:05

(c) 9:40~11:00

图 2 样本 10 分时段交通状况示意图 Fig.2 Traffic feature of different times in sample 10

(b) 9:05~9:40

表 4 和表 5 分别给出了样本 10 的 3 个时段 8 种不同"速-密关系"模型对应的畅行速度 *u*_f 优值 和按照式 (11) 计算的平均拟合误差, 其中最小车头 间距仍取 *h*_i = 7 m.

从表 4 和表 5 中又可以得出以下结论:

(1) 同一时段中不同模型的最优畅行速度大小 按以下规律排序: 对道路较为通畅的后两个时段而 言, Payne 平衡函数最小, 其次为 Kerner-Konhauser 平衡函数、Greenshields 模型、Lee 平衡函数、一维 管流模型 m = 2.8 和 m = 2.5, 最大的是 Greenberg 模型和 Underwood 模型, 这一次序与上节结论 1 相 同; 在道路最为拥挤的早高峰时段中, Payne 平衡函 数仍为最小, 其次为 Greenshields 模型、一维管流模 型 m = 2.8, Lee 平衡函数、Kerner-Konhauser 平衡 函数和一维管流模型 m = 2.5, 最大的仍是 Greenberg 模型和 Underwood 模型, 这一次序与上节结论 1 相比, 仅仅 Payne 平衡函数与 Greenshields 模型 的位置对调, 其余都相同.

表 4 不同"速-密关系"计算公式中的 $u_{\rm f}$ 最优值 Table 4 Optimal values of $u_{\rm f}$ of different

velocity-density formulas

								m/s
Eq.	(1)	(2)	(3)	(4)	(6)	(7)	(9)	(10)
$8:30 \sim 9:05$	14.88	29.68	25.99	14.55	17.90	16.84	15.99	18.29
$9:05 \sim 9:40$	19.44	30.14	29.01	17.38	17.82	20.01	20.48	22.58
9:40~11:00	21.39	29.21	29.62	18.44	18.81	21.45	22.32	24.35

表 5 不同"速-密关系"模型下的 er 比较

Table 5 Comparison of $e_{\rm r}$ calculated by different

velocity-density models

Eq.	(1)	(2)	(3)	(4)	(6)	(7)	(9)	(10)
$8:30{\sim}9:05$	39.58	50.09	32.32	30.98	58.08	52.01	40.33	41.58
$9:05{\sim}9:40$	28.00	39.86	32.46	28.77	37.84	32.17	28.65	29.82
$9{:}40{\sim}11{:}00$	16.42	27.35	24.77	19.24	15.85	16.86	17.01	18.09

(2) 同一模型在 3 个不同时段中的最优畅行 速度大小排序规律,除 Greenberg 模型和 Kerner-Konhauser 平衡函数之外,都是随着平均车速的增 大而增大,表现出比上节更简单的变化规律. Greenberg 模型和 Kerner-Konhauser 平衡函数分别出现 了一些反常数据,其中原因还需继续研究.

(3) 对同一时段而言,参数优化后各模型的拟 合误差大小排序规律为:在道路非常拥堵的早高峰 时段里, Payne 平衡函数误差最小,其次为 Underwood 模型、Greenshields 模型、一维管流模型 m = 2.8, m = 2.5, Greenberg 模型和 Lee 平衡函数, Kerner-Konhauser 平衡函数误差最大,这一规律与 上节结论 3 基本相同, 仅 Greenberg 模型位置有 一些变化;在道路已经比较通畅的第2个时段里. Greenshields 模型误差最小,其次为一维管流模型 m = 2.8, Payne 平衡函数, 一维管流模型 m = 2.5, Lee 平衡函数, Underwood 模型和 Kerner-Konhauser 平衡函数, Greenberg 模型误差最大, 这一次序与上 节结论 3 中样本 5 基本相同, 仅 Pavne 平衡函 数, Underwood 模型和 Kerner-Konhauser 平衡函 数的位置有变化;在道路最为通畅的第3个时段 里, Kerner-Konhauser 平衡函数误差变得最小, 其次 为 Greenshields 模型、Lee 平衡函数、一维管流模型 m = 2.8, m = 2.5 和 Payne 平衡函数, 误差最大的 是 Greenberg 模型和 Underwood 模型, 这一次序与 上一时段相比也基本相同, 仅 Kerner-Konhauser 平 衡函数和 Lee 平衡函数的位置有变化.

(4) 同一模型在 3 个不同时段中拟合误差大 小排序的规律也很简单: 除 Underwood 模型外, 都是随着道路交通条件的改善, 平均车速的增大, 拟合误差呈现下降趋势, 上节数据未能反映这种清 晰的结论. Underwood 模型中出现了一些反常数 据,其中原因还需继续研究. 与表 3 中样本 10 的 数据相比,分段之后第 3 个时段各模型的拟合误 差均明显减小,而早高峰时段的拟合误差则反而增 大,说明这些交通流模型用于城市高速路严重拥堵 状况时总体偏差可能比较大.

(5) 图 3 给出了第 1 和第 3 两个时段 8 种 交通流模型在各自不同的优化畅行速度取值下对 应的"流量-密度"关系曲线,其中密度 ρ 为车头 间距 h 的倒数 (单位是 km⁻¹), 流量 q 则是 ρ 和 v 的乘积 (单位是 h⁻¹). 根据以上分析, 在道路非 常拥堵的早高峰时段里, Payne 平衡函数误差最小, 图 3(a) 中显示它和其他模型的差别主要在于高密 度端流量值比较大,等价地说速度值也比较大,说 明在我国城市快速路交通的现实中,存在一定比例 的"激进型"驾驶员[17-19],即使在较小车头间距时 仍保持较快的车速. 同样理由, 由于高密度端流量 值相对最小,所以 Kerner-Konhauser 平衡函数在这 一时段里拟合误差最大. 在道路最为通畅的第3个 时段里, Kerner-Konhauser 平衡函数的拟合误差变 得最小,图 3(b) 中显示它有两个特点:在单车道密 度为 40~70 km⁻¹ 时 (对应无量纲密度从 0.3~0.5),

%

图 3 优化畅行速度下不同交通流模型的"流量-密度"关系曲线 Fig.3 q- ρ curves of different traffic flow models with optimal values of u_f

其流量 (速度) 值最大, 不过与 Greenshields 模型、 Lee 平衡函数、一维管流模型都很接近, 但明显大 于 Underwood 模型、Greenshields 模型和 Payne 平 衡函数; 在每车道密度大于 70 km⁻¹, 尤其是大于 90 km⁻¹ 的高密度范围里, 其流量 (速度) 值快速下 降, 不仅明显小于 Greenshields 模型、Lee 平衡函数 和一维管流模型, 并且也小于其他 3 个模型. 这一 结论能否说明道路交通条件改善之后"激进型"驾 驶行为就一定会减少? 笔者认为还需要更多样本 的数据分析.

(6) 总体而言,通过适当的参数优化,Kerner-Konhauser 平衡函数和 Payne 平衡函数能够分别对 畅通和拥挤条件下的样本数据有优度相对最高的 拟合结果,而形式最简单的线性函数 Greenshields 模型则能够对介于两种条件之间的实测数据有优 度相对最高的拟合结果.这些结论和第3节结论(5) 保持一致且更为深入,它们具有实际应用价值.从 图3可以看出,Greenshields 模型(等价于 *m* = 3.0 的一维管流模型^[8])和一维管流模型的曲线实际上 都非常接近,而一维管流模型在非优化参数条件下 具有优度相对最高的拟合结果^[14],这同样也是值 得重视的.

5 结 论

(1) 本文依据中国城市快速路实际交通录像中 采集的 210920 条"车速 - 车头间距"数据组成 的 16 个样本,按照平均车头间距不同选取其中 3 个样本作为代表,对 Greenshields 模型、Greenberg 模型、Underwood 模型、Payne 平衡函数、KernerKonhauser 平衡函数、Lee 平衡函数和一维管流模型等交通流"速-密关系"模型,进行模型参数优化和拟合优度比较研究,得到一系列定性和定量结论.

(2) 在最小车头间距取 $h_j = 7 \text{ m}$, 对应堵塞密度 $\rho_j = 143 \text{ km}^{-1}$ 前提下, 对同一样本而言, 最优畅行 速度最小的是 Payne 平衡函数、Kerner-Konhauser 平衡函数和 Greenshields 模型, 其次为一维管流模 型和 Lee 平衡函数, 最大的是 Underwood 模型和 Greenberg 模型. 一般而言, 在交通畅通的样本中, 交通流模型的最优畅行速度值会比较大; 定量来看, 畅行速度值变化范围为 14.55~36.75 m/s.

(3) 应用 Kerner-Konhauser 平衡函数时, 建议 改写成式 (6) 的形式, 其中 α 是一个可调节的系数. 如果仍然保持 $h_j = 7 \text{ m}$, 则取 $\alpha = 50$ 能够得到拟合 实测数据的较高优度.

(4) 应用参数优化后的模型比较拟合误差又发现: Kerner-Konhauser 平衡函数和 Payne 平衡函数能够分别对畅通和拥挤条件下的样本数据有优度相对最高的拟合结果,而形式最简单的线性函数 Greenshields 模型则能够对介于两种条件之间的实测数据有优度相对最高的拟合结果. 定性地说,各种交通流模型拟合我国城市高速路严重拥堵状况时偏差会比较大,随着道路交通条件的改善,平均车速的增大,所有模型的拟合误差都呈现明显下降趋势.

参考文献

1 戴世强, 冯苏苇, 顾国庆. 交通流动力学: 它的内容、方法

和意义. 自然杂志, 1997, 19: 196-201 (Dai Shiqiang, Feng Suwei, Gu Guoqing. Dynamics of traffic flow: its content, methodology and intent. *Chinese J of Nature*, 1997, 19: 196-201 (in Chinese))

- 2 Greenshields BD. A study of highway capacity. *Highway* Res Board Proc, 1934, 14: 448-477
- 3 Greenberg H. An analysis of traffic flow. Ops Res, 1959, 7: 79-85
- 4 Underwood RT. Speed, Volume and Density Relationships. Quality and Theory of Traffic Flow. Connecticut: New Haven, 1961. 141-188
- 5 Payne HJ. Model of freeway traffic and control. Math Methods of Public Systems, 1971, 1: 51-61
- 6 Kerner BS, Konhauser P. Cluster effect in initially homogeneons traffic flow. *Phys Rev E*, 1993, 48: 2335-2338
- 7 Lee HY, Lee HW, Kim D. Origin of synchronized traffic flow on highways and its dynamic phase transitions. *Phys Rev Lett*, 1998, 81: 1130-1133
- 8 吴正. 低速混合型城市交通的流体力学模型. 力学学报, 1994, 26(1): 149-157 (Wu Zheng. A fluid dynamics model for the low speed traffic systems. *Acta Mechanica Sinica*, 1994, 26(1): 149-157 (in Chinese))
- 9 Zhang HM. A theory of non-equilibrium traffic flow. Transpn Res B, 1998, 32: 485-498
- 10 Jiang R, Wu QS, Zhu ZJ. A new continuum model for traffic flow and numerical tests. *Transpn Res B*, 2002, 36: 405-419
- 11 Xue Y, Dai SQ. Continuum traffic model with the consideration of two delay time scales. *Phys Rev E*, 2003, 68: 066123
- 12 Huang HJ, Tang TQ, Gao ZY. Continuum modeling for two-lane traffic flow. *Chinese Journal of Theoretical and Applied Mechanics*, 2006, 22: 132-137
- 13 Schonhof M, Helbing D. Criticism of three-phase traffic theory. Transpn Res B, 2009, 43: 784-797
- 14 吴正, 郭明旻等, 大城市高架路实测数据分析与交通流

模型研究. 力学学报, 2010, 42(4): 789-797 (Wu Zheng, Guo Mingmin, et al. Measured data analysis of urban expressway and research on traffic flow models. *Chinese Journal of Theoretical and Applied Mechanics*, 2010, 42(4): 789-797 (in Chinese))

- 15 吴胜春,郑贤清,郭明旻等. 国内典型大城市快速路交通 流实测. 中国科学 (物理学力学天文学), 2011, 41: 791-800 (Wu Shengchun, Zheng Xianqing, Guo Mingmin, et al. Survey report on urban freeway traffic flow of several typical cities in China. *Scientia Sinica (Physica, Mechanica & Astronomica)*, 2011, 41: 791-800 (in Chinese))
- 16 林展熙, 吴正, 杨朝晖. 基于上海延安高架录像资料的 交通流实测研究. 水动力学研究与进展 A, 2010, 25: 683-693 (Lin Zhanxi, Wu Zheng, Yang Chaohui. A comparative study on traffic flow models based on video of Yanan Expressway of Shanghai. J Hydrodyn A, 2010, 25: 683-693 (in Chinese))
- 17 林展熙,郭明旻,郑贤清. 基于实测数据的交通流模型比 较研究. 力学学报, 2010, 42(5): 848-855 (Lin Zhanxi, Guo Mingmin, Zheng Xianqing. A comparative study on traffic flow models based on measured data. *Chinese Journal of Theoretical and Applied Mechanics*, 2010, 42(5): 848-855 (in Chinese))
- 18 吴可非, 邝华, 孔令江等. 元胞自动机 FI 和 NS 交通流 混合模型的研究. 广西师范大学学报, 2005, 23(4): 8-12 (Wu Kefei, Kuang Hua, Kong Lingjiang, et al. Study of a cellular automaton FI-and-NS mixed model for traffic flow. *J of Guangxi Normal University*, 2005, 23(4): 8-12 (in Chinese))
- 19 吴可非, 孔令江, 刘慕仁. 双车道元胞自动机 NS 和 WWH 交通流混合模型的研究. 物理学报, 2006, 55(2): 6275-6280 (Wu Kefei, Kong Lingjiang, Liu Muren. The study of a cellular automaton NS and WWH mixed model for traffic flow on a two-lane roadway. *Acta Physical Sinica*, 2006, 55(2): 6275-6280 (in Chinese))

DOI: 10.6052/0459-1879-11-377

(责任编辑: 刘希国)

STUDY ON OPTIMIZATION OF TRAFFIC FLOW VELOCITY-DENSITY MODELS FOR URBAN FREEWAY¹⁾

Wu Zheng^{*,2)} Guo Mingmin^{*} Xu Qian[†]

*(Department of Mechanics and Engineering Science, Fudan University, Shanghai 200433, China) †(Jiaxing TV and Radio University, Jiaxing 314000, China)

Abstract Traffic flow models are important means to describe various complex traffic procedures and to establish intelligence traffic systems of urban freeway. Generally the formation of a traffic flow model requires massive observation as well as in-depth analysis of real road traffic. Empirical data are indispensable to identify the parameters of the corresponding model. It is drawn in this paper that 210920 "car velocity-headway distance" data pairs are obtained from the long time video recordings of urban freeway in four Chinese cities. Three traffic flow data-samples are made up of parts of these measuring data and are applied to an optimization study of several manifold well-known traffic flow velocity-density models. Some qualitative and quantitative results of the optimal free velocity value in the models have been obtained. The superiorities of modified Kerner-Konhauser equilibrium function and Payne's one are found in simulating the measuring data under the traffic condition of be free and be crowd, respectively, while Greenshields model (i.e. 1D pipe fluid model when m = 3) can give the satisfying results for the measuring data when the traffic condition is between free and crowd.

Key words traffic flow model, measuring data, optimization of parameter, superiority of simulation

Received 19 December 2011, revised 22 February 2012.

¹⁾ The project was supported by the National Natural Science Foundation of China (11002035).

²⁾ E-mail: wuzheng@fudan.edu.cn